Газообразные топлива

СОДЕРЖАНИЕ


Введение

. Классификация и состав газообразных топлив

. Подготовка газа к фракционированию (процесс очистки и осушки)

.1 Очистка газа от примесей

.2 Очистка и осушка газа короткоцикловой безнагревной адсорбцией

. Разделение газа на фракции на установке ГФУ

. Получение и применение продуктов газофракционирования

Заключение

Список использованной литературы


Введение


Нефтеперерабатывающая и нефтехимическая промышленность является одной из ведущих отраслей тяжелой промышленности. В последние годы добыча нефти значительно сократилась.

Перед нефтеперерабатывающей промышленностью поставлена задача повысить эффективность использования нефти, обеспечить дальнейшее улучшение её переработки.

В настоящее время особая роль отведена увеличению глубины переработки нефтяного сырья с помощью различных термических и химических методов, с целью получения из нефти большего количества светлых нефтепродуктов. Широкое применение в нефтепереработки имеет газ. Газ применяется как хладагент, топливо.

В топливном балансе, газообразное топливо занимает существенное место. С каждым годом его потребление возрастает не только в промышленности, но и в хозяйстве. Газообразное топливо имеет ряд существенных преимуществ по сравнению с другими видами топлива: оно широко распространено, дешево, имеются его большие запасы, легко осуществляется дозировка и регулировка с воздухом. Многие газы обладают высокой тепловой ценностью. При сгорании они развивают высокую температуру, полностью сгорают с небольшим коэффициентом избытка воздуха, не содержат коррозионно-агрессивных веществ. Газообразное топливо очень удобно в использовании: в помещениях сохраняется чистота, так как при его сгорании не выделяются копоть и смолы, не остается золы, а продукты сгорания почти не содержат веществ, вредных для окружающей живой природы. Хранение газообразного топлива централизованно, что удобно для потребления: не нужны индивидуальные складские помещения, специальные хранилища. Использование газовых магистралей особенно важно для тех районов, где нет запасов твердого и жидкого топлива.

Основной недостаток многих видов газообразного топлива - их высокая взрывоопасность (природные газы, водород, метан). Легкая утечка горючих газов через мельчайшие неплотности требует внимания и осторожности при использовании. Те газы, в состав которых входит окись углерода, сильно ядовиты. Однако соблюдение правил технической и противопожарной безопасности, а также выполнение рекомендуемых мер, делает эксплуатацию газовых установок надежной и безопасной.


1. Классификация и состав газообразных топлив


Газообразные топлива - это в основном смесь различных газов, таких как метан, этилен, и других углеводородов. Также в состав газообразного топлива входят оксид углерода, диоксид углерода или углекислого газа, азот, водород, сероводород, кислород и другие газы, а также водяные пары.

Все виды газообразного топлива по теплоте сгорания делят на три группы: 1) низкокалорийные газы (генераторный, смешанный, доменный, рудничный и др.), выделяющие до 10000 кДж/м³; 2) среднекалорийные (водяной, светильный, коксовый и др.), при их сгорании выделяется 10000-20000 кДж/м³; 3) высококалорийные - более 20000 кДж/м³, к их числу относятся различные природные газы газовых месторождений, нефтяные или попутные газы, добываемые вместе с нефтью из нефтяных скважин, сжиженные газы, а также различные крекинговые и другие газы, получаемые при переработке нефти.

Газообразное топливо может быть естественным и искусственным. К естественным относятся легкие газообразные углеводороды, улавливаемые при добыче нефти, и природные газы чисто газовых месторождений. По составу и тепловой ценности природные газы различных месторождений отличаются незначительно. Их главная составная часть (92-99%) - метан СН4, что и обусловливает высокую взрывоопасность. Природный газ - самое дешевое топливо, что делает его чрезвычайно перспективным для использования во многих отраслях хозяйства. С каждым годом он находит все более широкое применение и в сельском хозяйстве и для обеспечения различных технологических и бытовых нужд.

Искусственные горючие газы получают при переработке твердых и жидких топлив (процессы сухой перегонки, коксования, полукоксования и др.). Наиболее распространены светильный, коксовый, водяной, смешанный, крекинговый. По тепловой ценности искусственные газы бывают как низко, так и высококалорийными. Их используют как топливо, а также часто смешивают с природным для снижения взрывоопасности. Смешивание проводят на специальных станциях, а к потребителю уже поступает готовый двойной или тройной газ. Однако необходимо помнить, что газ, поступающий к потребителю, все равно взрывоопасен, а часто и ядовит (если в нем содержится окись углерода) и поэтому требует осторожного обращения с ним.

Газовое топливо представляет собой смесь горючих и негорючих газов. Горючими являются метан, пропан, бутан, этан, водород и окись углерода; негорючими - азот, углекислый газ и кислород, а также некоторое количество примесей как горючих, так и негорючих веществ, количество которых лимитируется ГОСТ 5542-78.

С помощью приборов, называемых газоанализаторами, определяют состав газообразного топлива.

В состав сухого газообразного топлива входят:


CH4+ C2H4+ CO2 + H2+ H2S + CmHn+ N2 + O2+… = 100.


Метан (СН4) - основная составляющая часть многих природных газов. При сгорании 1 м³ метана выделяется 35 800 кДж теплоты. Метана в природных газах может содержаться до 93-98%.

Этилен (С2Н4) - при сгорании 1 м³ этилена выделяется 59000 кДж теплоты. В газах может содержаться небольшое его количество.

Водород (Н2) - при сгорании 1 м³ водорода выделяется 10800 кДж теплоты. Многие горючие газы, кроме коксового, содержат относительно небольшое количество водорода. Однако в коксовом газе его содержание может достигнуть 50-60%.

Пропан (С3Н8), бутан (С4Н10) - при горении этих углеводородов выделяется большее количество теплоты, чем при сгорании этилена, но в горючих газах их содержание незначительно.

Оксид углерода (СО) - при сгорании 1 м³ этого газа выделяется 12770 кДж теплоты. Оксид углерода - основная горючая составляющая доменного газа. Этот газ не имеет ни цвета, ни запаха, очень ядовит.

Сероводород (H2S) - при горении 1 м³ сероводорода выделяется 23400 кДж теплоты. При наличии в газообразном топливе сероводорода повышается коррозия металлических частей печи и газопровода. При одновременном присутствии в газе кислорода и влаги коррозирующее воздействие сероводорода усиливается. Сероводород - тяжелый газ с неприятным запахом, обладает высокой токсичностью.

Остальные газы (СО2, N2, О2) и пары воды - балластные составляющие. Их присутствие в топливе приводит к понижению температуры его горения. При повышении содержания этих газов снижается содержание горючих составляющих. Содержание в топливе более 0,5% свободного кислорода считается опасным по условиям техники безопасности.

Природные газы чисто газовых месторождений состоят в основном из метана (СН4), относятся к категории сухих (тощих) газов и характеризуются относительным постоянством состава, в то время как состав газов газонефтяных месторождений непостоянен и зависит от природы нефти, величины газового фактора и условий разделения нефтегазовых смесей.

Попутные газы из газовых шапок нефтяной залежи, как правило, содержат меньше тяжелых углеводородных газов, чем газы, получаемые из месторождений нефти, в которой они были растворены.

В народном хозяйстве широко применяются сжиженные углеводородные газы, которые находят применение в сельской местности и населенных пунктах, удаленных на значительные расстояния от магистральных газопроводов.

К сжиженным углеводородным газам относятся такие углеводороды, которые при нормальных условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления (без снижения температуры) переходят в жидкое состояние.

Сжиженные газы представляют собой смесь углеводородов, в основном пропана и бутана, с небольшими примесями более тяжелых. Источниками их получения являются попутные газы нефтяных и газоконденсатных месторождений и газы, образующиеся при переработке нефти. При атмосферных условиях сжиженные газы переходят в газообразное состояние, а при повышении давления или при снижений температуры превращаются в жидкость. Для транспортировки и хранения эти газы обычно сжижают, а у потребителей они используются в газовой фазе.

При снижении давления эти углеводородные жидкости испаряются и переходят в паровую фазу. Это позволяет перевозить и хранить сжиженные углеводороды, как жидкости, а контролировать, регулировать и сжигать газообразные углеводороды, как газы.

Доменный газ получается при выплавке чугуна в доменных печах как побочный продукт, Процесс образования доменного газа связан с взаимодействием углерода кокса с дутьем и реакциями восстановления железных руд. Состав доменного газа зависит от влажности и температуры подогрева дутья, обогащения его кислородом

Особенностями газообразных углеводородов являются: высокая плотность, значительно превышающая плотность воздуха; медленная диффузия в атмосферу, низкие температуры воспламенения, низкие пределы взрываемости в воздухе, высокий объемный коэффициент расширения жидкой фазы и другие факторы, которые повышают требования при их использовании.

Из углеводородных сжиженных газов в качестве топлива главным образом используются пропан, бутан и их смеси. Соотношение пропана и бутана в смеси этих газов устанавливается по соглашению между потребителем и поставщиком газа.

Технический пропан является универсальным сжиженным газом, так как он может применяться при естественном и искусственном испарении жидкости в пределах изменения температур от +45 до -35°С. Это позволяет в любое время года устанавливать баллоны и резервуары с жидким пропаном в отапливаемых и неотапливаемых помещениях, снаружи здания и в грунте. Достоинством пропана является и то, что образующиеся в начале и в конце опорожнения емкостей пары при любом методе испарения почти однородны по своему составу.

Основными видами газообразного топлива, используемого для газоснабжения городов и населенных пунктов, являются горючие газы с низшей теплотой сгорания не менее 12,57 мДж/м³ и согласно ГОСТ 5542-78 он должен соответствовать следующим требованиям: содержание в нем вредных примесей на 100 м³ газа не должно превышать (г):

Сероводорода - 2.

Смолы и пыли - 0,1.

Аммиака - 2.

Нафталина летом - 10.

Цианистых соединений нафталина зимой - 5.

В пересчете на HCN - 5.

Содержание кислорода не должно быть более 1% по объему.

Запах нетоксичных газов должен ощущаться при содержании их в воздухе в количестве не более 1/5 от нижнего предела воспламеняемости, а запах токсичных газов - при содержании их в воздухе и в количествах, допускаемых санитарными нормами, для чего газ должен одорироваться, если он не обладает достаточно сильным и характерным запахом.

Газы сухой перегонки твердого топлива можно подразделить на две группы: на газы с низким содержанием балласта и газы с высоким содержанием балласта.

Запах нетоксичных газов должен ощущаться при содержании их в воздухе в количестве не более 1/5 от нижнего предела воспламеняемости, а запах токсичных газов - при содержании их в воздухе и в количествах, допускаемых санитарными нормами, для чего газ должен одорироваться, если он не обладает достаточно сильным и характерным запахом.

Газы с малым содержанием балласта получают ісухой перегонкой углей и сланцев в печах с внешним обогревом. Их можно получить также при нагреве перерабатываемого топлива твердым теплоносителем, например золой или песком, при температуре около 900 °С.

К числу газов с малым содержанием балласта принадлежат газы, производимые полукоксованием, т. е. нагревом угля или сланцев до 500-550 °С, и газы, полученные в процессе коксования, т. е. нагревом каменных углей до температуры порядка 1000 °С.

При сухой перегонке топлива с высоким содержанием кислорода в горючей массе (древесина <#"justify">2. Подготовка газа к фракционированию


Газовые месторождения, как и нефтяные, находятся в различных регионах земной поверхности: на суше, под водой озер, морей и океанов.

Наибольшие запасы газа и нефти сосредоточены в России, Саудовской Аравии, США, Иране, Ираке, Мексике и в ряде других стран.

Мировые запасы газа составляют 143 трлн. м3, а нефти - 136 трлн. т.

Широкое применение природного газа началось лишь в середине ХХ-ого столетия. В период с 1950 г. по 1970 г. добыча газа в мире возросла с 192 млрд. м3 до 1 трлн. м3, т. е. в 5 раз.

Углеводородные газы, представляющие собой смесь углеводородов, наряду с нефтью, являются исходным сырьем для получения топливных компонентов, нефтехимического синтеза и органического синтеза.

Месторождения природного газа в зависимости от происхождения делят на три группы: чисто газовые, газоконденсатные и газонефтяные.

В чисто газовых месторождениях основным компонентом является метан (от 98 об. % и выше). Месторождения этих газов не связаны с месторождением нефти.

Природный газ - одно из важнейших горючих ископаемых, занимающие ключевые позиции в топливно-энергетических балансах многих государств, важное сырье для химической промышленности.

Почти на 90 % он состоит из углеводородов, главным образом метана (СН4). Содержит и более тяжелые углеводороды - этан, пропан, бутан, а также меркаптаны, сероводород и пары воды (вредные примеси), азот и углекислый газ (они бесполезны), полезные примеси гелия и других инертных газов. Энергетическая и химическая ценность природного газа определяется содержанием в нем углеводородов. Метан, содержащийся в природном газе, представляет немалую ценность для химической промышленности. При неполном его окислении образуется водород, оксид углерода (СО), ацетилен, а на их основе получают альдегиды, спирты, ацетон, уксусную кислоту, аммиак, формальдегид, метанол, хлороформ. Метан служит исходным сырьем для производства сажи. Этан является важнейшим сырьем для пиролиза. Природный газ, а не вода, является главным источником промышленного получения водорода. И все же в основном метан идет на сжигание. Природные газы широко используются для газификации промышленных районов и населенных пунктов.

Синтетические возможности других углеводородов, содержащихся в природном газе, более широкие, чем метана, но их содержание очень мало, и поэтому они не представляют интереса как сырье для органического синтеза.

Очень важно и ценно, что природный газ можно транспортировать на значительные расстояния с относительно небольшими затратами - по газопроводам.

Газы угольных пластов также представляют собой метановые газы и извлекаются при разработке угольных месторождений с целью предотвращения их выделения в горные выработки. В некоторых странах (Бельгии, Германии, Китае и др.) угольный газ используется как топливо. В относительно небольших количествах природные газы содержатся в пористых или трещиноватых породах, вмещающих рудные и нерудные полезные ископаемые, и мешают добыче последних, выделяясь в рудничную атмосферу.

В настоящее время газ используется в больших объемах, поэтому особенно актуально создание его резервов. Это привело к решению проблемы хранения газа и его транспортировки в больших объемах.

В газгольдерах хранится лишь минимально необходимый запас газа. Газгольдеры предназначены главным образом для того, чтобы с их помощью регулировать суточные неравномерности потребления газа на производстве. Для компенсации суточной неравномерности газового потребления используют газгольдеры высокого (цилиндрические и сферические) давления от 7.104 до 30.104 Па и низкого (мокрые и сухие) давления до 4000 Па. Для покрытия сезонной неравномерности газового потребления требуются крупные хранилища. На изготовление газгольдеров, в этом случае, придется расходовать слишком много стали и потребуются значительные площади для их установки. Поэтому компенсацию сезонной неравномерности газопотребления осуществляют с помощью подземных хранилищ, удельный расход металла на сооружения которых в 20-25 раз меньше.

Хранят природный газ в подземных газохранилищах, нередко используя для этого прежние выработки и огромные естественные пещеры. Первое в мире подземное газохранилище было сооружено на базе истощенного газового месторождения в провинции Онтарио (Канада) в 1915 году. В нашей стране подземное газохранилище - Башкатовское на западе Оренбургской области - было введено в эксплуатацию в 1958 году.

Различают два типа подземных газохранилищ: в искусственных выработках и в пористых пластах. Первый тип хранилищ получил ограниченное распространение. Так, в США по состоянию на 2004 год на них приходилось лишь 6 % из 371 подземных газохранилищ: 1 - в переоборудованной угольной шахте и 21 - в отложениях каменной соли. Остальные 349 подземных газохранилищ относятся к хранилищам второго типа: из них 305 размещены в отработанных нефтяных и газовых месторождениях, а 44 - в водоносных пластах.

Широкое использование хранилищ в истощенных нефтегазовых месторождениях объясняется минимальными дополнительными затратами на оборудование подземных газохранилищ, поскольку саму ловушку с проницаемым пластом природа уже «изготовила».

Давление закачиваемого в подземное хранилище газа достигает 15 МПа. Для закачки используют газомоторные компрессоры.

При отборе газа из хранилища его дросселируют, производят очистку и осушку газа, а затем после замера количества возвращают в магистральный газопровод. Если давление газа в подземном хранилище недостаточно высоко, его предварительно компримируют и охлаждают.

Очистка газа от пыли, окалины и частиц масла перед его закачкой в хранилище имеет очень большое значение, т. к. в противном случае засоряется призабойная зона и уменьшается приемистость скважин.

Оптимальная глубина, на которой создаются подземные газохранилища, составляет от 500 до 800 м. Это связано с тем, что с увеличением глубины увеличиваются затраты на обустройство скважин. С другой стороны, глубина не должна быть слишком малой, т. к. в хранилище создаются достаточно высокие давления.

Подземное хранилище заполняют газом несколько лет, закачивая каждый сезон несколько больший объем газа, чем тот, который отбирается.

Общий объем газа в хранилище складывается из двух составляющих: активной и буферной. Буферный объем обеспечивает минимально необходимое заполнение хранилищ, а активный - это тот объем газа, которым можно оперировать.

Газонефтяные - попутные газы, сопровождающие нефть и выделяющиеся при ее добыче. Месторождения этих газов генетически связаны с месторождениями нефти.

Характерной особенностью состава нефтяных попутных газов является наличие в них, кроме метана, этана, пропана бутанов и паров более тяжелых углеводородов. Во многих попутных нефтяных газах присутствует сероводород, негорючие компоненты: азот, углекислый газ, а также редкие газы - неон и аргон. Последние содержатся в малых количествах, но являются полезными и нужными для народного хозяйства газами и их выделение представляет промышленный интерес.

Нефть и газ скапливаются в таких участках земной коры («ловушках»), где физические и геологические условия благоприятствуют длительному хранению. В нефтяной залежи газ, сопровождающий нефть, может находиться в растворенном виде (тяжелые углеводороды) или располагаться над скоплением нефти в виде «газовой шапки». Состав свободных газов, находящихся непосредственно над нефтью или мигрировавших в выше расположенные коллекторы, может сильно отличаться от состава газов, растворенных в нефти. Состав попутных нефтяных газов, выделяющихся из нефти в процессе ее добычи, значительно отличается от состава свободных газов, добываемых из газоносных пластов того же месторождения. Влиянием растворимости тяжелых углеводородов могут быть объяснены часто наблюдаемые расхождения в составе образцов газов, получаемых из одной и той же нефтяной скважины. Состав газов сильно зависит от условий отбора пробы, от давления, под которым находится газ в скважине, соотношения в пробе свободного газа из залежи и газа, выделившегося из нефти при ее подъеме в скважине. В связи с этим содержание и состав тяжелых углеводородов в газах, отобранных на одной и той же площади, показывают значительные колебания. Это относится и к таким хорошо растворимым газам, как Н2S и СО2.

При вскрытии пласта из скважины вначале начинает фонтанировать газ газовой шапки, а затем, по мере падения давления, начинает выделяться газ, растворенный в нефти. В некоторых случаях, когда газ полностью растворен в нефти, он добывается вместе с нефтью. Количество газа в кубических метрах, приходящееся на 1 т добываемой нефти, называется газовым фактором, который для различных месторождений неодинаков и зависит от природы месторождения, режима его эксплуатации и может изменяться от 1-2 м3 до несколько тысяч м3 на 1 т добываемой нефти.

Большая часть попутных нефтяных газов относится к «жирным» газам, содержащим кроме метана и С2-С4, тяжелые углеводороды С5+ в количестве 50 г/м3. При переработке попутных нефтяных газов, прежде всего, удаляют бензин, т. е. из них выделяют углеводороды, входящие в состав бензина. Полученный таким образом бензин называют газовым, и он является добавкой к товарным бензинам. После отбензинивания попутные нефтяные газы состоят преимущественно из метана, а также небольших количеств этана, пропана и бутанов.

Нефтяные попутные газы используют в качестве топлива и химического сырья. Энергетическое использование связано с их высокой теплотворной способностью, которая колеблется от 2225 до 3350 кДж/м3 углеводородной части газа. При электрокрекинге из метана образуется ацетилен, при конверсии метана перегретым водяным паром в присутствии катализаторов образуется смесь СО и Н2, применяющаяся как сырье во многих органических синтезах. Этан и пропан служат источником получения этилена и пропилена, на основе которых получают полиэтилен и полипропилен. Из пропилена получаю производные акриловой кислоты, акриламид, акрилонитрил, ацетонитрил. Бутаны и пентаны служат источником получения бутадиена и изопрена, на основе которых получают синтетические каучуки. Бутан используют для получения бутиловых спиртов, кетонов и других соединений.

При содержании в газе 5 об. % и более этана и углеводородов С3 и выше месторождения относят к газоконденсатным. Образование газоконденсатных месторождений объясняется растворимостью нефти и газа под высоким давлением в глубинных пластах. Плотность газов (этана, пропана) при сверхкритических температурах под давлением около 75 МПа и более превышает плотность жидких углеводородов и поэтому последние растворяются в сжатом газе. При разработке газоконденсатных месторождений давление снижается, и жидкие углеводороды отделяются от газа в виде газового конденсата, т. е. в виде жидкой фазы.

Содержание жидких компонентов в газе газоконденсатных месторождений колеблется в широком диапазоне. Количество выделяемого из газа стабильного конденсата при давлении максимальной конденсации (Р - 5 МПа) и - 5 0С (точки росы при подготовке к транспортированию в умеренной и жаркой климатических зон) изменяется от 10 до 700 см3/м3. Конденсаты в основном малосернистые (0,01 - 0,58 % масс.). По фракционному составу кондесаты весьма разнообразны. Температуры выкипания меняются в широких пределах: начало кипения от 25 до 103 0С, конец кипения от 185 до 360 0С и выше. Поэтому газовые конденсаты можно разделить на три основные группы:

) светлые конденсаты, состоящие в основном из фракций бензина и дизельного топлива;

) тяжелые конденсаты, в которых содержится более 20% фракций, выкипающих при температуре свыше 3200С;

) конденсаты, в которых содержатся сероорганические соединения и растворен сероводород.

Газовые конденсаты третьей группы перед транспортировкой подвергают стабилизации, где за счет ректификации отгоняется сероводород, который в последующем используется как сырье для получения серы.

По групповому составу конденсаты различных месторождений могут значительно отличаться. Так, газовые конденсаты Краснодарского и Восточно-Украинского месторождений состоят в основном из ароматических и нафтеновых углеводородов - ценного сырья для производства ароматических углеводородов - бензола, толуола, ксилолов.

Газоконденсаты с высоким содержанием парафинов целесообразно направлять на пиролиз, в результате чего получают сырье для получения бутадиена, изопрена.

При переработке газа вводятся понятия:

сухой газ - газ, состоящий из метана и этана

жирный газ - газ, содержащий помимо алканов С1-С4 значительное количество ( 50 г/м3) паров пентана и высших углеводородов.
Углеводороды, входящие в состав природных газов, условно можно подразделить на три группы. В I группу входят метан и этан, представляющие собой в нормальных условиях сухой газ, содержание их составляет от 30-98 %.

Во II группу входят пропан, i-бутан и n-бутан. Эти углеводороды в чистом виде при нормальных условиях представляют собой газ, но при повышенном давлении переходят в жидкое состояние. Эта группа углеводородов получила название сжиженные газы.

В III группу входят i-пентан, n-пентан, гексан и высокомолекулярные углеводороды. При нормальных условиях они - жидкости и входят в состав бензинов.

Сущность газопереработки состоит в удалении из исходного газа кислых компонентов и влаги, а затем в извлечении из этого же газа углеводородов II и III групп.


2.1 Очистка газов от примесей


Очистка газов. Нефтезаводские газы, полученные при переработке сернистых нефтей, всегда содержат сероводород и некоторые другие сернистые соединения. Особенно много сероводорода в газах установок, перерабатывающих тяжелое сырье: мазут, вакуумные дистилляты, гудрон.

Сероводород ухудшает работу катализаторов тех каталитических процессов, которые используют в качестве сырья сжиженные газы, его присутствие совершенно недопустимо в бытовом сжиженном газе. Наличие активных сернистых соединений вредно влияет на оборудование газоперерабатывающих установок, вызывает активную коррозию аппаратов и трубопроводов.

Поэтому углеводородные газы, содержащие сероводород и такие активные сернистые соединения, как низшие меркаптаны, перед подачей на ГФУ подвергают очистке. В некоторых случаях газы нефтепереработки очищают также от окиси и двуокиси углерода.

При очистке газа от сероводорода чаще всего используется процесс абсорбции. Абсорбентами для избирательного извлечения сероводорода из газов служат растворы трикалийфосфата, фенолята натрия, этаноламинов.

Наиболее распространена на НПЗ очистка при помощи раствора моноэтаноламина (МЭА).

Сырой газ, поступающий на транспортировку, содержит механические примеси - песок, пыль, а после транспортировки и продукты коррозии газопроводов. Если их предварительно не удалить, они, попадая в компрессоры, вызывают усиленный износ поршней, цилиндров, поршневых колец, клапанов и других деталей, а на отбензинивающих установках забивают прорези колпачков на тарелках, загрязняют теплообменники, холодильники и другую аппаратуру.

Кроме механических примесей вместе с газом поступает капельная влага, капельки компрессорного масла, а если это попутный газ - то капельки нефти. Их также надо удалить перед процессом отбензинивания, чтобы предотвратить загрязнение абсорбентов, адсорбентов, а также выпускаемой жидкой продукции.

На заводы, перерабатывающие жирный газ, вместе с газом поступает выпавший конденсат газового бензина. Перед подачей в компрессоры газ должен быть отделен от этого конденсата. Капли бензина, увлекаемые потоком газа, разжижают и смывают смазку компрессорных цилиндров, а при попадании в цилиндры большого количества бензина возможны гидравлические удары и серьезные повреждения.

Для очистки газа от механических примесей, а также капельной влаги, нефти и бензинового конденсата устанавливают сепараторы различных конструкций. За счет уменьшения скорости движения газа, изменения направления потока или возникновения центробежной силы (тангенциальный ввод) газ освобождается от механических примесей, капель воды, масла и конденсата.ефтяные и природные газы некоторых месторождений содержат сероводород (Н2S) и диоксид углерода (СО2). В зависимости от содержания сероводорода газы подразделяются на слабосернистые, сернистые, высокосернистые.

К слабосернистым относятся газы, в которых содержание сероводорода не превышает 20 мг/м3, а меркаптановой серы не более 36 мг/м3. Такие газы не подвергают очистке от сернистых соединений перед подачей их в магистральные газопроводы или потребителям на месте добычи.

К сернистым относят газы, в которых содержание сероводорода не превышает 0,5% по объему. Такие газы подлежат обязательной очистке. Как правило, в таких газах содержится значительное количество диоксида углерода (СО2), который извлекается вместе с сероводородом.

К высокосернистым относятся газы, содержащие выше 0,5 об. % сероводорода. В отдельных случаях содержание этого компонента составляет 20 % по объему и выше. Эти газы подлежат обязательной очистке от серосодержащих компонентов.

Целью очистки газа чаще всего является удаление сернистых соединений, представленных в нефтяных газах в основном сероводородом. Присутствие сероводорода в газе недопустимо в виду:

) корродирующих и токсичных свойств сероводорода;

) отравляющего действия сероводорода на большинство катализаторов;

) ухудшения качества продукции;

) загрязнения атмосферы;

) присутствия сероводорода в бытовом сжиженном газе.

Именно поэтому очистку газа от серосодержащих компонентов необходимо проводить на самой ранней стадии его переработки.

Техническими условиями на углеводородное сырье для нефтехимического производства содержание сернистых соединений, в том числе сероводорода, также строго ограничивается, оно должно быть в пределах от 0,002 до 0,005 мас. %.

Корродирующими свойствами, особенно в присутствии влаги, обладает и двуокись углерода. Поэтому газы, содержащие кислые компоненты, перед подачей потребителю подвергают очистке: из них выделяю сероводород и двуокись углерода.

Из серосодержащего газа можно получить элементарную серу. При этом исключается загрязнение атмосферы вредными веществами, такими, как сернистый ангидрид (SO2) и др.

Способы выделения кислых компонентов подразделяют на две группы:

сухие - с применением очистной массы в твердом виде;

мокрые - с применением жидких растворов.

При сухих способах используют твердые поглотители (адсорбенты) - оксид цинка, шлам алюминиевого производства, губчатое железо (оксид железа), активированный уголь; в настоящее время все чаще используют для очистки цеолиты, с помощью которых одновременно осушают и очищают газы от сероводорода, углекислоты и воды.

Твердые поглотители, кроме цеолитов, применяют для очистки относительно небольших количеств газа и при низком давлении. Все твердые поглотители используют для очистки газов с низким содержанием сероводорода.

Мокрые способы применяют для очистки больших количеств газа со значительным содержанием в нем сероводорода (сернистых соединений) и углекислоты и при высоком давлении. Мокрые способы выделения кислых компонентов подразделяются на несколько видов:

процессы, в которых происходит химическое взаимодействие H2S и CO2 с активной частью абсорбента;

процессы, в которых поглощение H2S и CO2 осуществляется за счет физического растворения;

процессы, в которых применяют абсорбенты смешанного типа; поглощение H2S и CO2 происходит одновременно за счет физической абсорбции (растворение) и химической реакции (хемосорбции).

Процессы хемосорбции, основанные на химическом взаимодействии H2S и CO2 с активной частью сорбента, наиболее распространенные. К ним относятся процессы на основе алканоаминов: моноэтаноламина (МЭА), диэтаноламина (ДЭА), триэтаноламина (ТЭА), дигликольамина (ДГА) и горячего раствора карбоната калия (поташа).

Моноэтаноламиновый процесс очистки наиболее старый и распространенный, его преимущества - высокая активность (высокая поглотительная способность), низкая стоимость, доступность (выпускается в России), легкость регенерации, низкая растворимость углеводородов, небольшие капитальные вложения.

Недостатки - повышенный расход тепловой энергии на регенерацию абсорбента, неустойчивость к СОS, СS2 и O2, под воздействием которых МЭА вступает в необратимые реакции, более высокая упругость паров, чем у ДЭА, а отсюда и повышенный расход; МЭА - коррозионно-активное вещество.

Диэтаноламиновый процесс - второй по распространенности. Его преимущества по сравнению с МЭА - устойчивость к СОS, СS2 и O2, меньшая упругость паров и, вследствие этого, низкие потери при испарении. Недостатки (по сравнению с МЭА) - меньшая химическая активность, меньшая поглотительная способность, неэффективность при удалении меркаптанов. Концентрация ДЭА в применяемых растворах колеблется в пределах от 20 до 30 мас. %.

ДГА применяют в процессе под названием экономин (фирма Флуор, США). В качестве абсорбента используют 65-70 %-ный раствор ДГА, причем на некоторых установках поглотительная способность раствора достигает 37-52 м3 по H2S на 1 м3 раствора.

Преимущества процесса: низкие (по сравнению с МЭА) капиталовложения и расход пара на регенерацию, а также низкая температура застывания (важно для северных районов), ДГА не подвергается необратимому отравлению СОS и СS2.

Недостаток - высокая стоимость абсорбента. ДГА рекомендуется для очистки газов, содержащих не менее 1,5-2 мас. % кислых компонентов; применение процесса позволяет получать очищенный газ с концентрацией 5,7 мг/м3 H2S и 0,01 об. % CO2.

Процесс очистки с применением горячего карбоната калия (поташа) осуществляется 25-35 %-ным раствором К2СО3; аналогичен процессам с применением аминов, но проводят его в абсорбере при более высокой температуре (93-125 0С).

Преимущества поташного способа очистки: высокая поглотительная способность СО2, низкие эксплуатационные расходы и стоимость абсорбента. Недостатки - неэффективность процесса поглощения H2S из газа, в котором содержание CO2 относительно невелико или же он отсутствует; это объясняется тем, что выделяющаяся при регенерации углекислота содействует отдувки H2S. Не достигается очистка газа до показателей, требуемых техническими условиями; для доведения концентрации H2S в очищенном газе до нормы применяют доочистку МЭА. Поташный способ нельзя применять при давлении обрабатываемого газа меньше, чем 2,1 МПа, и при низком парциальном давлении кислых газов.

Процессы, основанные на физическом растворении кислых компонентов, используют главным образом для очистки газов, содержащих большие количества сероводорода и углекислого газа и находящихся под высоким давлением.

Такие процессы характеризуются малыми кратностями циркуляции и поэтому относительно низкими капитальными удельными вложениями и энергетическими затратами; экономичность процессов повышается с увеличением содержания кислых компонентов в очищаемом газе, так как поглотительная способность растворителей прямо пропорциональна парциальному давлению кислых компонентов.

Основная часть поглощенных кислых газов при десорбции выделяется из газа без затрат теплоты за счет снижения давления над растворами. Абсорбенты физической абсорбции удаляют из газа СОS, СS2, меркаптаны, не подвергаясь разложению. Относительно небольшое содержание воды в растворе сорбента и невысокая температура процесса обеспечивают незначительную коррозию и позволяют использовать оборудование, выполненной из углеродистой стали.

Недостатки процессов этого вида - высокая стоимость абсорбента, трудность достижения глубокой очистки газов и, кроме того, склонность абсорбентов к извлечению тяжелых углеводородов, особенно ароматики, что осложняет получение элементарной серы. При снижении давления очищаемого газа эффективность очистки резко уменьшается.

К процессам физической абсорбции относятся такие, как процесс «Селексол» - применяемые абсорбенты смесь полиэтиленгликолей с диметиловым эфиром (ДМПЭГ). Этот процесс используют для газов, содержащих много СО2 и немного Н2S. Растворимость Н2S в ДМПГЭ в 7 - 10 раз выше, чем растворимость СО2, что дает возможность селективного извлечения.

В процессе «Флуор сольвент» используют в качестве абсорбента пропиленкарбонат. Область использования аналогична процессу «Селексол».

В процессе «Пурисол» используют абсорбент п-метил-2-кетопиролидин, предназначенный для грубой очистки газов с высоким содержанием кислых компонентов.

В процессе «Сульфинол» сорбент комбинированный и состоит из растворителя - сульфолана, химического поглотителя - диизопропаноламина и воды. Основная масса кислых компонентов, содержащихся в очищенном газе, растворяется в сульфолане, а при взаимодействии кислых остаточных компонентов с длиизопропаноламином концентрация их снижается до требуемого уровня.

Если тяжелые газовые компоненты получаются с технологической установки в жидком виде (под давлением), то их можно подвергнуть простой щелочной промывке для удаления сернистых и кислых соединений.

Все природные и нефтяные газы, добываемые из недр Земли, насыщены водяными парами, так как содержащие газ или нефть горные породы снизу подстилает пластовая вода.

Содержание водяных паров в газе зависит от температуры и давления. При заданных значениях температуры и давления количество водяных паров в единице объема газа не может быть больше предельной (максимальной) величины. Если снизить температуру газа, содержащего максимальное количество водяных паров, то часть их конденсируется. Температура, при которой происходит конденсация водяных паров, содержащихся в газе или воздухе, называется точкой росы. Таким образом, точка росы соответствует максимальному содержанию водяных паров в газе при данном давлении.

Различают абсолютную и относительную влажность газа. Абсолютная влажность (влагосодержание) газа - это масса водяных паров, находящихся в единице объема (г/м3) или единице массы (г/кг).

Относительная влажность - это отношение массы водяного пара, фактически находящегося в газовой смеси, к массе насыщенного водяного пара, который мог бы находиться в данном объеме газа при тех же температуре и давлении. Относительную влажность измеряют в процентах или долях единицы.

Если газ, насыщенный при данных условиях водяными парами, охладить или изотермически сжать, то из него будет выделяться вода. При определенных сочетаниях температур и давлений выделившаяся вода, контактируя с газом, способна образовывать гидраты - белые кристаллические вещества, похожие, в зависимости от условий образования, на лед или спрессованный снег. Плотность их колеблется в пределах 880-900 кг/м3. Основной каркас (решетка) гидрата состоит из молекул воды, а межмолекулярные промежутки в форме клеток, каналов, слоев заняты молекулами углеводородных газов.

При определенных условиях молекулы углеводородов не могут покинуть полость в кристаллической решетке молекул воды. Гидраты компонентов природных газов имеют формулы: СН4 * 6Н2О; С2Н6 * 8Н2О; С3Н8 * 17Н2О; i-С4Н10 * 17Н2О; H2S * 6H2O; N2 * 6H2O; CO2 * 6H2O. Эти формулы гидратов газов соответствуют идеальным условиям, т. е. таким условиям, при которых все большие и малые полости гидратной решетки заполнены на 100%. В гидратах углеводородных газов обычно большие полости кристаллической водной решетки заполнены жидким пропаном и изобутаном, а малые полости - метаном, этаном, азотом, сероводородом, двуокисью углерода.

Гидраты природных газов - типичные смешанные гидраты, в которых гидратообразователями являются не отдельные углеводороды, а смесь газов. Присутствие Н2S или N2 в смеси природных и нефтяных газов значительно повышает температуру гидратообразования. В то же время наличие в газе H2S и CO2 понижает равновесное давление гидратообразования, причем влияние H2S значительно сильнее, чем CO2. Условия образования смешанных гидратов не совпадают с условиями гидратообразования отдельных компонентов и зависят от состава газа.

Образование гидратов увеличивается с повышением давления и снижения температуры газа. Гидраты могут образовываться на всем пути движения газа от забоя скважины до пункта сбора газа, причем самая неприятная особенность гидратов заключается в том, что они способны образовываться при температурах значительно выше нуля (до +22 0С).

Образование гидратов в трубопроводах или аппаратах, по которым движется влажный газ, возможно лишь при определенном сочетании температур и давлений и наличии свободной воды. Гидраты растут подобно кристаллам и образуют пробки в трубопроводах, в прорезях тарелок и вентилях, если кристаллики гидрата не уносятся с газом.

Гидраты более тяжелых углеводородов, чем метан, образуются при значительно более низких давлениях. Чем больше молекулярная масса углеводорода, тем ниже критическая температура существования гидрата, и чем больше плотность газа, тем при более низких давлениях (при одной и той же температуре) он образует гидрат.

Подогрев газа предотвращает образование гидратов, но он может быть эффективен только в пределах промысла, так как газ при течении по газопроводам быстро охлаждается. Введение в газосборную систему ПАВ, образующих на кристаллах гидратов пленки, предотвращает прилипание (адгезию) их к стенкам труб. Кристаллогидраты с ПАВ на поверхности не коалесцируют и легко могут транспортироваться потоком газа, не отлагаясь на стенках труб. Однако самым эффективным методом для предупреждения и ликвидации уже образовавшихся гидратов является подача в газопроводы различных ингибиторов гидратообразования - спиртов и гликолей.

Наиболее распространенным ингибитором гидратообразования является метанол. Метанол, введенный в поток газа в распыленном состоянии, поглощает водяные пары и переводит их в спиртово-водный раствор, при этом понижается точка росы газа, что создает условия для разложения гидрата или предупреждает его образование. Спиртово-водный раствор имеет низкую температуру замерзания. Увлекаемый потоком газа жидкий раствор собирается в специальных отстойниках (дриппах) и оттуда выдувается в атмосферу, т. е. безвозвратно теряется.


2.2 Очистка и осушка газа короткоцикловой безнагревной адсорбцией

газообразный топливо адсорбция примесь

Осушка газа. Осушка необходима в тех случаях, когда газ направляется для каталитической переработки с использованием чувствительного к воде катализатора или когда фракционирование и дальнейшая переработка газа проводятся при низких температурах. Если неосушенный газ охлаждать до температур ниже 0°С, это может привести к забиванию льдом аппаратуры и трубопроводов.

При осушке газа применяют твердые и жидкие поглотители воды, которые должны отвечать следующим требованиям: высокая влагоемкость, хорошая регенерируемость, большой срок службы, невысокая стоимость и простота получения. Наилучшим сочетанием этих качеств из числа твердых поглотителей обладают активированная окись алюминия, силикагель, синтетические цеолиты (молекулярные сита), а из жидких - ди- и триэтиленгликоли.

Жидкостная осушка на НПЗ проводится, как правило, диэтиленгликолем (ДЭГ).

Некоторые жидкости и твердые вещества при контакте с многокомпонентной газовой средой способны избирательно извлекать из нее отдельные ингредиенты и поглощать(сорбировать) их.

Абсорбция - поглощение газов или паров из газовых или парогазовых смесей жидкими поглотителями, называемыми абсорбентами. Возможность осуществления процесса абсорбции основывается на растворимости газов в жидкостях. Процесс абсорбции является избирательным и обратимым, что дает возможность применять его не только с целью получения растворов газов в жидкостях, но также и для разделения газовых или паровых смесей.В последнем случае после избирательной абсорбции одного или нескольких компонентов из газовой или паровой смеси проводят десорбцию-выделение этих компонентов из жидкости и таким образом осуществляют разделение. Регенерированный абсорбент вновь возвращается на абсорбцию(круговой процесс).

Поглощение газа может происходить либо за счет его растворения в абсорбенте, либо в результате его химического взаимодействия с абсорбентом. В первом случае процесс называют физической абсорбцией, а во втором случае- хемосорбцией .Возможно также сочетание обоих механизмов процесса. Абсорбируемые компоненты газовой смеси называют абсорбтивом, а не абсорбируемые - инертом. Абсорбентами служат индивидуальные жидкости или растворы активного компонента в жидком растворителе. Во всех случаях к абсорбентам предъявляют ряд требований, среди которых наиболее существенными являются: высокая абсорбционная способность, селективность, низкое давление пара, химическая инертность по отношению к распространенным конструкционным материалам (при физической абсорбции, также к компонентам газовой смеси), нетоксичность, огне- и взрывобезопасность, доступность и не высокая стоимость. При проведении абсорбции в качестве абсорбентов применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей, органические вещества и водные суспензии различных веществ. Если растворимость газов при 0°С и парциальном давлении 101,3 кПа составляет сотни грамм на 1кг абсорбента, то такие пары называют хорошо растворимыми . Для удаления из технических выбросов таких газов, как NH3, НСl и HF, целесообразно применять в качестве абсорбента воду. Нецелесообразно использовать воду для очистки выбросов с нерастворимыми в ней органическими примесями. Подобные загрязнители как правило хорошо поглощаются органическими жидкостями, среди которых могут использоваться как абсорбенты высококипящие вещества ,такие как этаноламины и тяжелые предельные углеводороды (минеральные масла).

Способ и устройство, основанные на короткоцикловой безнагревной адсорбции, относятся к газовой промышленности. В устройство введена вихревая трубка, обеспечивающая образование двух потоков продувочного газа - холодного и горячего, используемых в процессе регенерации. Адсорберы, отработавшие в режиме адсорбции, переключают на режим регенерации. Часть очищенного и осушенного газа из коллектора через ресивер направляют в вихревую трубку. Продувочный газ перед поступлением в вихревую трубку проходит теплообменник, установленный одновременно и на коллекторе сброса продувочного газа. В теплообменнике газ подогревается продуктами очистки, а затем после вихревой трубки горячий поток поступает на продувку в адсорбер, в котором к этому времени снижают давление. После продувки горячим потоком снижают давление ниже продувочного и откачивают продукты очистки с помощью эжектора. Эжектор установлен после ресивера. Затем повышают давление до продувочного значения и продувают адсорбер холодным потоком. По окончании регенерации давление в адсорбере повышают для следующего цикла очистки и осушки. Такое выполнение повышает надежность осушки газа и производительность установки.

Изобретение относится к газовой промышленности, в частности к очистке и осушке газа.

Известен способ очистки и осушки газа, основанный на короткоцикловой адсорбции, включающей адсорбцию очищаемых компонентов, горячую регенерацию адсорбента и его охлаждение. При этом регенерацию адсорбента обычно проводят нагретым газом температурой до 620oK за счет подвода внешней тепловой энергии.

Основной недостаток указанного способа - это высокая энергоемкость процесса регенерации адсорбента и снижение его срока службы из-за периодического нагрева и охлаждения адсорбента в большом температурном диапазоне.

Известно также устройство для осуществления способа короткоцикловой адсорбции, содержащее адсорберы с адсорбентом, печь для нагрева регенерационного газа, рекуперативный теплообменник для утилизации тепла регенерационного газа, управляемую арматуру и командный блок.

Недостаток устройства заключается в его сложном аппаратном оформлении и в необходимости подвода внешнего энергоносителя к устройству по очистке и осушке газа.

Наиболее близкой по технической сущности и достигаемому эффекту к заявляемому изобретению является способ очистки и осушки газа, основанный на короткоцикловой безнагревной адсорбции, включающий адсорбцию очищаемых компонентов и регенерацию адсорбента, состоящей из процессов: снижения давления газа в адсорбере, продувки адсорбента очищенным и осушенным газом под низким давлением и повышения давления газа в адсорбере до рабочего значения после регенерации.

Недостатком способа является большой расход очищенного и осушенного газа на продувку и регенерацию адсорбента по сравнению с горячей регенерацией. Учитывая, что газ на продувку адсорбента отбирается из общего количества продуцированного очищенного и осушенного газа, то это приводит к снижению производительности установки в целом. Снижение же количества продуваемого газа уменьшает степень очистки и осушки газа, Известное устройство короткоцикловой безнагревной адсорбции, содержащее систему с не менее чем 5 адсорберами, например, со смешанным адсорбентом, соединенные с коллектором подачи очищаемого газа и с коллектором отвода очищенного и осушенного, на котором установлен ресивер для накопления и подачи этого газа на продувку адсорбента, управляемую арматуру для переключения адсорберов с режима адсорбции на регенерацию и обратно, а также командный блок.

Недостаток устройства - нерациональное использование перепада давления газа между рабочим циклом адсорбции и десорбции, а также небольшая продолжительность полуцикла адсорбции и десорбции, что приводит к частым переключениям адсорберов и к снижению надежности управляемой арматуры.

Решаемая задача - увеличение надежности и производительности установки по очищенному и осушенному газу, а также снижение энергопотребления регенерационного цикла и повышение степени очистки газа.

Решение поставленной задачи заключается в том, что в способе очистки и осушки газа, основанном на короткоцикловой безнагревной адсорбции, включающем адсорбцию очищаемых компонентов, регенерацию адсорбента, проводимую путем снижения давления газа в адсорбере, продувки адсорбента очищенным и осушенным газом под низким давлением с откачкой продуктов очистки, и повышение давления газа в адсорбере после регенерации, продувочный газ при снижении давления разделяют на горячий и холодный потоки в вихревой трубке, продувают адсорбент горячим потоком, снижают давление в адсорбере ниже продувочного и откачивают продукты очистки, повышают давление до величины продувки, которую ведут холодным потоком при температуре ниже температуры очищаемого газа.

А в устройстве, используемом для осуществления предлагаемого способа, содержащем адсорберы, например, со смешанным адсорбентом, соединенные с коллектором подачи очищаемого и с коллектором отвода очищенного и осушенного газа, ресивер, установленный на последнем, коллектор сброса продувочного газа, применены вихревая трубка и эжектор, установленные после ресивера, и теплообменник, установленный между ресивером и вихревой трубкой и на коллекторе сброса продувочного газа.

В периодических адсорбционных способах очистки и осушки газов основной проблемой является регенерация адсорбента с целью удаления продуктов очистки и восстановление его динамической активности до первоначального номинального значения.

Для регенерации адсорбента затрачивается большое количество энергии на его нагрев и десорбцию продуктов очистки с последующим охлаждением адсорбента для восстановления его динамической активности. Чем выше концентрация адсорбента в очищаемом газе, тем больше требуется адсорбента, а следовательно, тем больше нужно подвести тепловой энергии для его регенерации. В этом случае энергозатраты на очистку и осушку газа адсорбционным способом значительно больше, чем при очистке и осушке газа способом адсорбции.

Однако при необходимости тонкой очистки и осушки газа до высокой степени очистки, например, перед ожижением газа или других технологических процессов адсорбционный способ имеет значительные преимущества.

Способ короткоцикловой безнагревной адсорбции экономически эффективен, так как не требует подвода внешних энергоресурсов для регенерации адсорбента и прост в аппаратном оформлении, так как отсутствует печь для нагрева регенерационного газа.

При короткоцикловой безнагревной адсорбции поглощенные адсорбентом продукты очистки удаляют за счет снижения давления газа в адсорбере, в результате которого снижается равновесное давление между адсорбтивом и адсорбатом, уменьшается парциальное давление адсорбтива и динамическая активность адсорбента, что позволяет ослабить диффузионную связь между зернами адсорбента и продуктами очистки и удалить последние продувкой очищенным и осушенным газом.

Однако для удаления продуктов очистки холодным потоком газа требуется сравнительно больше газа, чем при горячей продувке адсорбента, которое обычно отбирается из уже очищенного и осушенного газа, снижая количество очищенного газа, подаваемого в следующий технологический процесс.

Количество газа, необходимое для продувки адсорбента в безнагревном режиме десорбции, определяется по уравнению:

пр = К х Yо (Pпр/Pо)


где Yпр, Pпр - объемный расход и давление продувочного газао, Pо - объемный расход и давление очищаемого газа

К - коэффициент избытка газа, который согласно экспериментальным данным равен 1,1 - 1,2.

Из приведенного уравнения видно, что чем меньше Pпр, тем меньше объемный расход газа на продувку. При снижении давления газа в адсорбере ниже Pпр с помощью эжектора соответственно уменьшается объемный расход продувочного газа.

Поясним на примере. При осушке воздуха рабочим давлением 0,8 МПа короткоцикловым безнагревным способом продувку адсорбента, в частности силикагеля, проводят при давлении, близком к атмосферному и равном 0,12 МПа, тогда объемный расход осушенного воздуха на продувку силикагеля составит 18% от общего объема очищаемого газа. При снижении давления газа в адсорбере с помощью эжектора до величины 0,03 МПа объемный расход продувочного газа может быть снижен до 5,0% и соответственно увеличится производительность установки по очищенному газу на 10 - 12% с учетом расхода очищаемого газа на эжектор.

Полнота десорбции продуктов очистки во многом определяется адсорбционной способностью продуваемого газа. Например, при продувке адсорбента осушенным газом (точка росы - 70oC) температурой +10oC можно вынести с продуваемым газом 9,4 г/м3 влаги при условии насыщения продуваемого газа и относительной его влажности 100%. При нагреве продуваемого газа до + 50oC, соблюдая те же условия, можно вынести до 83,0 г/м3, то есть одно и тоже количество влаги можно вынести меньшим количеством газа. Кроме того, с повышением температуры продуваемого газа увеличивается глубина десорбции и степень очистки газа. В то же время, принципиальная схема короткоцикловой безнагревной адсорбции не предусматривает источника подогрева газа, поэтому в рассматриваемом изобретении используется энергия сжатого газа, которая в традиционной схеме безнагревной десорбции диссипируется в окружающую среду при снижении давления газа в режиме регенерации. Для преобразования перепада давления газа между рабочим режимом адсорбции и десорбции продуктов очистки в тепловую энергию используется вихревая трубка, которая позволяет разделить продувочный газ на горячий и холодный потоки. Для повышения температуры горячего потока газа используется теплота адсорбции поглощаемых компонентов и рекуперируется теплота продуваемого газа с помощью дополнительно устанавливаемого теплообменника и подогрева газа на входе в сопло вихревой трубки.

Продувая последовательно адсорбент вначале горячим, а затем холодным очищенным газом, увеличивают полноту десорбции продуктов очистки и значительно повышают динамическую активность адсорбента.

Сравнение существенных признаков предложенного и известных решений дает основание считать, что предложенное техническое решение отвечает критериям "изобретательский уровень" и "промышленная применимость".

Сущность изобретения поясняется чертежом, где на рисунке 1 изображена принципиальная схема устройства по очистке и осушке газа короткоцикловой безнагревной адсорбцией.

Рисунок 1 Схема устройства по очистке и осушке газа


Устройство для очистки и осушки газа содержит адсорберы А, Б, В, Г и Д с двухслойным адсорбентом, в которые очищаемый газ подается по коллектору подачи очищаемого газа (1), а очищенный и осушенный газ по коллектору отвода (2) отводится сверху. К этому последнему коллектору подсоединен ресивер (3) для накопления и подачи продувочного газа на регенерацию через вихревую трубку (4), установленную после ресивера. Для откачки продуктов очистки используется эжектор (5), установленный также после ресивера. Снизу к адсорберам присоединен и коллектор отвода продувочного газа (6), на котором установлен теплообменник (7), одновременно размещенный на потоке газа между ресивером и вихревой трубкой. Управление арматурой для переключения адсорберов с режима адсорбции на регенерацию и обратно осуществляется командным блоком (на чертеже не показаны)

Принцип работы устройства заключается в следующем. Сырой исходный газ под давлением пропускают через, например, адсорбер А, где газ, проходя через первый слой адсорбента-силикагеля или окиси алюминия, подвергают предварительной осушке и очистке, а во втором слое адсорбента - цеолите производят окончательную глубокую осушку и очистку газа, который направляют потребителю, отбирая часть газа в ресивер для продувки адсорбента и откачки адсорбера. После насыщения адсорбента продуктами очистки адсорбер А переводят в режим регенерации, а адсорбер Б - в режим очистки и осушки. Процесс регенерации адсорбента состоит из следующих операций: снижение давления газа в адсорбере до величины, при которой проводится продувка адсорбента горячим очищенным и осушенным газом, снижение давления в адсорбере ниже продувочного с помощью эжектора и откачка продуктов очистки, повышение давления в адсорбере до величины, при которой проводится продувка адсорбента холодным потоком очищенного и осушенного газа, медленное повышение давления газа в адсорбере до рабочего значения режима очистки и осушки за счет подачи сырого исходного газа. Все адсорберы периодически и последовательно проходят режимы адсорбции и регенерации. Очищенный и осушенный газ для продувки отбирают из ресивера и через теплообменник направляют в вихревую трубку, где разделяют на холодный и горячий потоки, при этом долю холодного потока выбирают таким образом, чтобы обеспечить не только высокую температуру горячего потока, но и достаточный расход газа для продувки. Для обеспечения непрерывности работы вихревой трубки режим продувки организуют так, что пока в одном адсорбере продувают адсорбент горячим газом, то в это же время идет продувка адсорбента холодным потоком газа в другом адсорбере при одинаковых давлениях. Продувочные газы и газ после эжектора сбрасывают в магистраль газа низкого давления. Для снижения температуры сбрасываемого газа смешивают горячий поток после теплообменника с холодным потоком после эжектора.

Пример выполнения способа.

Очистка природного газа от диоксида углерода и осушки от влаги перед его ожижением для предотвращения конденсации указанных компонентов на теплопередающей поверхности холодильников при температуре 110К осуществляется следующим образом.

Очищаемый природный газ в количестве 9000 нм3/ч, давлением 4,5 МПа, с температурой 278К и содержанием диоксида углерода 0,1% (об.) при 100% относительной влажности подают на адсорбер A снизу. В адсорбере A природный газ вначале осушается на слое силикагеля до абсолютного влагосодержания, соответствующего точке росы -40oC, кроме того, в этом слое адсорбируются тяжелые углеводороды, имеющие сравнительно высокую температуру конденсации, затем газ осушается в слое цеолита до точки росы -70oC и очищается от диоксида углерода до остаточного содержания 40 ppm и подается на ожижение.

Часть очищенного газа отбирают в ресивер, где поддерживают давление газа, равное давлению газа на выходе из адсорберов. Количество адсорбента, засыпанного в адсорберы, обеспечивает очистку и осушку газа указанного расхода в течение 60 мин.

По истечении этого времени c помощью управляемых клапанов адсорбер А переводят в режим регенерации, а в режим очистки и осушки включают адсорбер Б. В режиме регенерации вначале снижают давление газа с 4,5 МПа до 0,6 МПа в течение 30 мин со скоростью 0,13 МПа в мин, а затем продувают адсорбенты горячим потоком газа с температурой 355К и расходом 360 нм3/ч в течение 60 мин. Продувку производят обратным потоком, подавая горячий газ в адсорбер сверху и отводя продувочные газы снизу через теплообменник в магистраль низкого давления газа. Утилизации тепла продувочных газов позволяет повысить температуру газа на входе в сопло вихревой трубки до 310 К и получить на выходе ее горячего конца - 355К. После прогрева адсорбента прекращают его продувку и откачивают продукты очистки с помощью эжектора, снижая давление в адсорбере до 0,15-0,2 МПа. Откачку адсорберов производят в течение 30 мин, затем вновь повышают давление газа в адсорбере до 0,6 МПа в течение 30 мин. Такое повышение давления в адсорбере предусмотрено для выравнивания давления газа между горячим и холодным потоками. После повышения давления в адсорбере продувают адсорбент холодным потоком газа с температурой 268K в течение 60 мин, снижая температуру адсорбента до 273K и повышая динамическую активность адсорбента. Продувочный холодный газ в количестве 440 нм3/ч отбирают с холодного конца вихревой трубки и после адсорбера сбрасывают в коллектор низкого давления, где он смешивается о горячим потоком газа после теплообменника. На этом процесс регенерации адсорбента завершается. Для подготовки адсорбера к режиму очистки и осушки в нем повышают давление до рабочего значения 4,5 МПа за счет подачи исходного очищаемого газа.

Все адсорберы работают 60 мин в режиме адсорбции и 240 мин в режиме регенерации, то есть цикл регенерации адсорбента занимает в 4 раза больше времени, чем его работа в режиме адсорбции. Это также является существенным отличием от традиционной короткоцикловой безнагревной адсорбции, где полуциклы адсорбции и регенерации равны. Это позволяет значительно сократить количество циклов срабатывания управляемой арматуры. Так, например, в выпускаемых блоках осушки воздуха, работающих по принципу короткоцикловой безнагревной адсорбции с 2-мя адсорберами и продолжительностью полуцикла адсорбции и регенерации по 10 мин при круглогодичной работе блока очистки и осушки газа (8000 часов) количество переключении клапанов составит 48000, а по предлагаемой схеме - количество переключений клапанов составляет 1600 циклов. Надежность работы предлагаемого устройства будет значительно выше и экономичнее, чем известные способы короткоцикловой безнагревной адсорбции.


3. Разделение газа на фракции на установке ГФУ


Газофракционирование - получение индивидуальных легких углеводородов или углеводородных фракций высокой чистоты из нефтезаводских газов.

Газофракционирующие установки (ГФУ) - комплекс устройств для разделения смеси лёгких углеводородов на индивидуальные или технически чистые вещества. Ha ГФУ перерабатываются газовые бензины, получаемые из нефтяных (попутных), природных и нефтезаводских газов, жидкие продукты, выделенные из газов коксования каталитич. риформинга и термич. крекинга. В состав сырья входят в основном индивидуальных низкомолекулярных углеводородов С1 С6 (как предельных, так и непредельных, нормального или изостроения) или их фракций высокой чистоты, являющихся компонентами высокооктановых автобензинов, ценным нефтехимическим сырьем, а также сырьем для процессов алкилирования и производств метилтретбутилового эфира и т.д.

На нефте- и газоперерабатывающих заводах наибольшее распространение получили следующие физические процессы разделения углеводородных газов на индивидуальные или узкие технические фракции: конденсация, компрессия, ректификация и абсорбция. На ГФУ эти процессы комбинируются в различных сочетаниях. До фракционирования углеводородные газы направляются вначале в блоки очистки от сероводорода и осушки.

Смеси углеводородов разделяются ректификацией в колонных аппаратах ГФУ. Ректификация является завершающей стадией разделения углеводородных газов. Особенность ректификации сжиженных газов, по сравнению с ректификацией нефтяных фракций, необходимость разделения очень близких по температуре кипения компонентов или фракций сырья при высокой четкости фракционирования.

Основными показателями работы ГФУ являются четкость разделения сырья на составляющие компоненты и концентрация целевых компонентов во фракциях. Качество их должно удовлетворять требованиям технических условий и стандартам.

Абсорбция позволяет перевести извлекаемые газы в жидкое состояние при сравнительно невысоких давлениях. Количество и качество абсорбента, а также температура и давление абсорбции зависят от состава разделяемого газа и заданной глубины извлечения отдельных компонентов; 97,8%-ное извлечение пропан-пропиленовой фракции удается осуществить при давлении 12 атм и подаче 7 л абсорбента на 1 м? газа, не прибегая к искусственному холоду. Абсорбционный метод извлечения газов начал успешно применяться после разработки головной, комбинированной аб-сорбционно-отпарной колонны, называемой также фракционирующим абсорбером.

Для каждой установки разрабатывается своя технологическая карта, в которой указывают: оптимальный режим работы всего оборудования - пределы изменений основных параметров процесса - давление в колоннах и емкостях орошении, температура верха и низа (на контрольной тарелке) колонн, расход сырья, расход орошения, уровни в кипятильниках, емкостях орошения и химический состав получаемых продуктов.

Газофракционирующая установка (ГФУ) служит для разделения смеси лёгких углеводородов на индивидуальные, или технически чистые, вещества.

ГФУ входит в состав газобензиновых, газоперерабатывающих, нефтехимических и химических заводов. Мощность ГФУ достигает 750 тыс. т сырья в год.

Для переработки на ГФУ поступает сырьё - газовые бензины, получаемые из природных и нефтезаводских газов, продукты стабилизации нефтей, газы пиролиза и крекинга. В состав сырья входят в основном углеводороды, содержащие от 1 до 8 атомов углерода в молекуле. Разделение смесей углеводородов осуществляется ректификацией в колонных аппаратах.

Из верхней части колонны отводятся пары пропана, которые конденсируются в конденсаторе-холодильнике и поступают в ёмкость орошения. Часть пропана возвращается на верх колонны как орошение, а избыток отводится в виде готового продукта. Жидкость с низа колонны после подогрева поступает для дальнейшего разделения по такой же схеме в следующую колонну, где из неё выделяется в виде верхнего продукта смесь бутанов, а из нижней части отводится бензин. Аналогичным образом производится разделение бутанов на изобутан и нормальный бутан, а бензина - на изопентан, нормальный пентан, гексаны и т.д. Примерное содержание чистого вещества (в%) в товарном продукте того же наименования при переработке газового бензина: пропан 96; изобутан 95; нормальный бутан 96; изопентан 95; стабильный бензин 74.

Установки разделения газов (ГФУ) подразделяются по типу перерабатываемого сырья - на установки предельных и непредельных газов и по типу применяемой схемы извлечения целевых компонентом из газов - на установки конденсационно-компрессионные и абсорбционные. При необходимости продукты подвергаются дополнительной очистке от меркаптанов раствором щелочи.

В качестве примера приводится описание технологической схемы установки конденсационно-компрессионного типа для переработки предельных углеводородов (рисунок 2) и установки абсорбционного типа для переработки газов каталитического крекинга (рисунок 3).


Рисунок 2. Технологическая схема газофракционирующей установки конденсационно-компрессионно-ректификационного типа: I - газ установок первичной переработки нефти; II - головка стабилизации установок первичной переработки нефти; III - головка стабилизации каталитического риформинга; IV - пропановая фракция; V - изобутановая фракция; VI - бутановая фракция; VII - изопентановая фракция; VIII - пентановая фракция; IX - газовый бензин (С6 и выше); X - сухой газ; XI - аммиак


Современные установки разделения газов работают по разным технологическим схемам: с нисходящим и восходящим режимом давления.

По схеме с нисходящим режимом давления первой по пути сырья является этановая колонна, с верха которой отбираются углеводороды С1-С2. Кубовый продукт этой колонны поступает в следующую колонну, с верха которой отбирается пропан, и так далее. Наивысшее давление поддерживается в первой колонне (3,0 МПа), затем оно постепенно снижается в последующих колоннах. Схема с нисходящим режимом давления требует меньшего числа насосов, так как кубовый продукт самотеком проходит из колонны в колонну. Если в поступающем на ГФУ сырье немного пропана и бутана, то экономические преимущества оказываются на стороне схемы с восходящим режимом давления. На рис. 2 приведена принципиальная технологическая схема газоразделения с нисходящим режимом давления.

Прямогонный газ через сепаратор С-1 подается на сжатие компрессором ЦК-1. При сжатии газ нагревается до 120 °С. Сжатый газ затем конденсируется в водяном конденсаторе-холодильнике ХК-1 и в конденсаторе-холодильнике ХК-2, охлаждаемом испаряющимся аммиаком. В ХК-1 охлаждение и конденсация заканчивается при 50 °С, а в ХК-2 - при 4 °С. После каждой ступени конденсации газожидкостная смесь разделяется на газ и жидкость в сепараторах С-2 и С-3. Газовые конденсаты из сепараторов С-1, С-2 и С-3 совместно с головками стабилизации установок первичной перегонки и риформинга подаются на блок ректификации.

В блоке ректификации из углеводородного сырья сначала удаляются метан и этан. Удаление происходит в ректификационной колонне, которая называется деэтанизатором. Верхний продукт этой колонны - метан и этан, нижний - деэтанизированная фракция. Верхний продукт деэтанизатора охлаждается искусственным хладагентом - аммиаком.

Деэтанизированная фракция из колонны К-1 поступает в депропанизатор К-2, верхним продуктом которого является пропановая фракция, а нижним - депропанизированная фракция. Верхний продукт после конденсации в воздушном конденсаторе-холодильнике ХК-4 и охлаждения в концевом холодильнике выводится с установки, предварительно пройдя щелочную очистку. Нижний продукт из депропанизатора К-2 подается в дебутанизатор К-3.

Ректификатом колонны К-3 является смесь бутана и изобутана, а остатком - дебутанизированный легкий бензин. Ректификат конденсируется в конденсаторе-холодильнике ХК-5, а затем подается на разделение в бутановую колонну К-4. Остаток из колонны К-3 переходит в депентанизатор К-5.


Рисунок 3. Технологическая схема газофракционирующей установки абсорбционно-ректификационного типа: I - жирный газ; II - свежий раствор МЭА; III - сероводород; IV - сухой газ; V - нестабильный бензин; VI - бутан-бутиленовая фракция; VII - стабильный бензин; VIII - пропан-пропиленовая фракция.


Установка, схема которой приведена на рисунке 3, предназначена для стабилизации бензина каталитического крекинга, очистки газа каталитического крекинга от сероводорода, извлечения из газа углеводородов С3-С4, разделения смеси этих углеводородов на пропан-пропиленовую и бутан-бутиленовую фракции.

Жирный газ с установки каталитического крекинга поступает на очистку моноэтаноламином в абсорбер К-1. Очищенный газ сжимается компрессором ПК-1 до 1,4 МПа, охлаждается и подается во фракционирующий абсорбер К-2, под 22-ю тарелку. На эту же тарелку, но выше ввода газа подается конденсат компрессии.

Во фракционирующий абсорбер вводится также нестабильный бензин, являющийся основным абсорбентом.

Фракционирующий абсорбер, иначе называемый абсорбер-десорбером, отличается от обычного абсорбера тем, что представляет собой комбинированную колонну. В верхней части фракционирующего абсорбера происходит абсорбция, т. е. извлечение из газа целевых компонентов, а в нижней - регенерация абсорбента за счет подводимого тепла. Стекая сверху вниз по тарелкам фракционирующего абсорбера, насыщенный тяжелыми компонентами абсорбент встречается со все более горячими парами, десорбированными из жидкости, которая стекает в нижнюю часть колонны. С верха фракционирующего абсорбера уходит сухой газ, содержащий углеводороды C1-С2, а с низа вместе с тощим абсорбентом выводятся углеводороды С3-С4. В отличие от обычных абсорберов, куда питание подается только в газовой фазе, во фракционирующие абсорберы оно вводится и в виде жидкости, и в виде газа.

Для доабсорбции унесенных с сухим газом бензиновых фракций в верхнюю часть К-2 подается стабильный бензин. Температура в абсорбционной части поддерживается промежуточным охлаждением абсорбента. Насыщенный и деэтанизированный абсорбент из К-2 подается в стабилизатор К-3, верхним продуктом которого является головка стабилизации, а нижним - стабильный бензин. Головка стабилизации поступает на блок очистки, где очищается от сернистых соединений раствором МЭА и щелочью. Затем из очищенной головки в пропановой колонне К-4 выделяется пропан-пропиленовая фракция. Остаток пропановой колонны в бутановой колонне К-5 разделяется на бутан-бутиленовую фракцию и остаток, который объединяется со стабильным бензином.


4. Применение продуктов газофракционирования


Природный газ отлично вступает в химическую реакцию горения. Поэтому чаще всего из него получают энергию - электрическую и тепловую. Но на основе газа можно сделать еще удобрение, топливо, краску и многое другое.

Во многих странах около половины поставок газа приходится на энергетические компании и коммунальное хозяйство. Даже если в доме нет газовой плиты или газового водонагревателя, все равно свет и горячая вода, скорее всего, получены с использованием природного газа.

Природный газ - самое чистое среди углеводородных <#"justify">-метан-этановую (сухой газ), иногда этановую, которую используют как сырье пиролиза или в качестве хладоагента на установках глубокой депарафинизации масел и т.д.;

пропановую, используемую как сырье пиролиза, бытовой сжиженный газ и хладоагент для производственных установок;

изобутановую, являющуюся сырьем установок алкилирования, производств синтетического каучука;

бутановую для получения бутадиена или используемую как бытовой сжиженный газ и как компонент автобензинов для регулирования их пусковых свойств;

изопентановую, которая служит сырьем для производства изопренового каучука и высокооктановым компонентом автобензинов;

пентановую фракцию - сырье для процессов пиролиза, изомеризации и т.д. Иногда смесь пентанов и более тяжелых углеводородов не разделяют на фракции, а используют как газовый бензин.

На ГФУ непредельных газов из олефинсодержащих потоков выделяются следующие фракции:

-пропан-пропиленовая - сырье процессов полимеризации и алкилирования, нефтехимических производств;

бутан-бутиленовая - сырье установок алкилирования для производств метилэтилкетона, полиизобутилена, синтетического каучука и др.;

этан-этиленовая и пентан - амиленовая фракции, используемые как нефтехимическое сырье.

Получаемые на ГФУ фракции углеводородных газов должны по качеству соответствовать техническим условиям на эти нефтепродукты.


Заключение


.Нам представленна классификация и состав газообразных топлив.

.Описаны процессы очистки и осушки газа современными технологиями.

3.Имеются необходимых сведений о химическом составе и физических свойствах газа, и его переработке на установках ГФУ.

4.Применение продуктов газофракционирования

Общее потребление природного газа в мире составляет 2,35 трлн. м3, или 22,8% суммарного мирового потребления топливно-энергетических ресурсов. Природный газ способен стать основой решения глобальной задачи для дальнейшего существования нашей цивилизации, обеспечивая устойчивое энергообеспечение мира в условиях острой необходимости снижения нагрузок на существующие экосистемы.

Современный уровень добычи природного газа может быть обеспечен разведанными запасами на 130 лет, и поистине безграничны его объемы добычи в гидратной форме, которые пока не используются.

Из-за глобального ухудшения состояния окружающей среды (качество воздуха, парниковый эффект, озоновые дыры, радиоактивные отходы), которое связано непосредственно с состоянием топливно-энергетическим комплексом ведущих промышленно развитых стран, использование углеводородных газов особенно актуально. Это связано с тем, что при замене углеводородными газами угля, торфа, сланцев, кокса, мазута как топливно-энергетических ресурсов, происходит меньшее воздействие на окружающую среду, что особенно важно при решении экологических проблем. Более того, возможно и в настоящее время существуют процессы скорее даже не утилизации, а дальнейшее использования продуктов сгорания, что делает еще более привлекательным использование углеводородных газов

Газообразное топливо имеет значительные преимущества по сравнению с твердым топливом и находит широкое применение в промышленности» в быту, в автотранспорте, химической промышленности. И использование газообразных топлив целесообразней, чем использование жидких топлив, так как они более экологичны и экономичны. Также, преимуществом является то, что запасы газообразных видов топлив, на данный момент, гораздо больше, чем других видов.


Список Литературы


1.Альбом технологических схем процессов переработки нефти и газа. - Под ред. Б.И. Бондаренко. - М.: Химия, 1983.

2.Черкни И.Р. Крекинг нефтяного сырья и переработка углеводородных газов. 3 изд., М. 1980.

3.Макаров Ю.И., Геникн А.Э. Технологическое оборудование химических и нефтеперерабатывающих производств. 2 изд., М. 1976. 368 с.

4.Баринов В.Е. Газофракционирующие установки. М. 1962.

.Гуревич И.Л. Технология переработки нефти и газа: ч.1. М.: Химия, 1972. 360 с.

.Мановян А.К. Технология первичной переработки нефти и природного газа: Учебное пособие для вузов. М.: Химия, 1999. 568 с.


Теги: Газообразные топлива  Курсовая работа (теория)  Химия